Discipline: Actual problems of chemistry of polymer composites

Lecture 5.

Theme: Short Fiber Reinforced Polymer Composites. Orientation and Length of Fibers

Objective:

To understand the behavior and properties of short fiber reinforced polymer composites, with a focus on how fiber length, orientation, and distribution influence the mechanical and physical performance of the composite material.

Key Questions:

- 1. What are short fiber reinforced polymer composites?
- 2. How does fiber length affect the strength and stiffness of composites?
- 3. How does fiber orientation influence composite anisotropy and performance?
- 4. What are the critical factors in processing short fiber composites?
- 5. How to optimize fiber length and orientation for specific applications?

Lecture Content:

Definition:

- Short fiber reinforced composites contain fibers that are **significantly** shorter than the dimensions of the composite part.
- Fibers can be chopped, milled, or discontinuous, typically in the range of micrometers to a few millimeters.
- They are easier to process than continuous fibers and can be used in injection molding, extrusion, and compression molding.

• Influence of Fiber Length:

- o Critical Fiber Length (Lc): Minimum fiber length required to effectively transfer stress from matrix to fiber.
- o Fibers shorter than Lc contribute less to reinforcement.
- Longer fibers increase tensile strength, modulus, and toughness but may complicate processing.
- o Fiber length distribution affects uniformity of mechanical properties.

• Influence of Fiber Orientation:

o Aligned fibers provide high strength and stiffness in the fiber direction.

- Randomly oriented fibers give more isotropic properties but lower maximum strength.
- Processing methods (injection molding, extrusion, compression) influence fiber orientation patterns.
- o **Anisotropy** occurs when fibers are preferentially aligned, leading to directional mechanical behavior.

• Processing Considerations:

- Short fibers are easier to handle and mold compared to continuous fibers.
- o Fiber breakage can occur during processing, reducing effective length.
- Proper control of processing parameters ensures optimal orientation and minimal fiber damage.

• Applications:

- o Automotive parts: dashboards, bumpers, and structural components.
- Electrical housings and consumer goods.
- o Industrial components requiring moderate strength with good manufacturability.

Key Short Theses:

- 1. Short fiber reinforced composites use **discontinuous fibers** embedded in a polymer matrix for reinforcement.
- 2. **Fiber length** is critical: fibers longer than the critical length efficiently transfer stress to the matrix.
- 3. **Fiber orientation** controls anisotropy: aligned fibers maximize directional strength, random fibers improve isotropy.
- 4. Fiber length distribution affects uniformity of mechanical properties.
- 5. Processing methods influence fiber breakage, orientation, and effective reinforcement.
- 6. Short fiber composites are **easier to process** than continuous fiber composites but have lower maximum strength.
- 7. Optimal performance requires balancing fiber length, orientation, and processing conditions.

Control Questions:

- 1. What defines a short fiber reinforced polymer composite?
- 2. How does fiber length influence the mechanical properties of composites?
- 3. What is the critical fiber length and why is it important?
- 4. How does fiber orientation affect anisotropy and overall composite performance?
- 5. How do processing methods affect fiber orientation and breakage?

6. Give examples of applications of short fiber reinforced composites.

Recommended references

Main literature:

- 1. Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition 2nd Edition / by Manas Chanda, CRC Press; 2nd edition (January 11, 2013)
- 2. Polymer Chemistry 2nd Edition / by Paul C. Hiemenz, Timothy P. Lodge, CRC Press; 2nd edition (February 15, 2007)
- 3. Semchikov Yu.D. High-molecular compounds: Textbook for universities. Moscow: Academy, 2003, 368.
- 4. S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala. Polymer composites. Wiley-VCH, 2012. 829 p.
- 5. Irmukhametova G.S. Fundamentals of polymer composite materials technology: textbook for universities; Al-Farabi Kazakh National University. Almaty: Kazakh University, 2016. 175 p.

Additional literature:

- 1. Polymer composite materials (part 1): a tutorial / L.I. Bondaletova, V.G. Bondaletov. Tomsk: Publishing house of Tomsk Polytechnic University, 2013. 118 p.
- 2. Polymer composite materials: structure, properties, technology. Edited by Berlin A.A. St. Petersburg, Publishing house "Profession", 2008. 560 p.
- 3. Polymer composite materials: structure, properties, technology: a tutorial / M.L. Kerber et al.; under the general editorship of A.A. Berlin. St. Petersburg: Profession, 2009.- 556, [4] p.
- 4. Bataev, A.A. Composite materials. Structure, production, application: a tutorial. manual / A. A. Bataev, V. A. Bataev. M.: Logos, 2006. 397, [3] p. (New University Library).